Bluetongue virus (BTV) causes bluetongue disease in ruminants and sheep. The current live attenuated and inactivated vaccines available for prevention pose several risks, and there is thus a need for vaccines that are safer, economically viable, and effective against multiple circulating serotypes. This work describes the development of recombinant virus-like particle (VLP) vaccine candidates in plants, which are assembled by co-expression of the four BTV serotype 8 major structural proteins.
View Article and Find Full Text PDFThe idea of producing vaccines in plants originated in the late 1980s. Initially, it was contemplated that this notion could facilitate the concept of edible vaccines, making them more cost effective and easily accessible. Initial studies on edible vaccines focussed on the use of a variety of different transgenic plant host species for the production of vaccine antigens.
View Article and Find Full Text PDFBackground: Rift Valley fever virus (RVFV), the causative agent of Rift Valley fever, is an enveloped single-stranded negative-sense RNA virus in the genus Phlebovirus, family Bunyaviridae. The virus is spread by infected mosquitoes and affects ruminants and humans, causing abortion storms in pregnant ruminants, high neonatal mortality in animals, and morbidity and occasional fatalities in humans. The disease is endemic in parts of Africa and the Arabian Peninsula, but is described as emerging due to the wide range of mosquitoes that could spread the disease into non-endemic regions.
View Article and Find Full Text PDFRift Valley fever virus (RVFV) is an emerging mosquito-borne virus and hemorrhagic fever agent, which causes abortion storms in farmed small ruminants and potentially causes miscarriages in humans. Although live-attenuated vaccines are available for animals, they can only be used in endemic areas and there are currently no commercially available vaccines for humans. Here the authors describe the production of chimaeric RVFV virus-like particles transiently expressed in Nicotiana benthamiana by Agrobacterium tumefaciens-mediated gene transfer.
View Article and Find Full Text PDFThe spread of influenza A viruses is partially controlled and prevented by vaccination. The matrix protein 2 ectodomain (M2e) is the most conserved sequence in influenza A viruses, and is therefore a good potential target for a vaccine to protect against multiple virus subtypes. We explored the feasibility of an M2e-based universal influenza A vaccine candidate based on the highly pathogenic avian influenza A virus, H5N1.
View Article and Find Full Text PDF