Aromatase catalyses the conversion of androgens into estrogens and is a well-known target for breast cancer therapy. As it has been suggested that its activity is affected by inhibitors of phosphodiesterase-5, this work investigates the potential interaction of sildenafil with aromatase. This is carried out both at molecular level through structural and kinetics assays applied to the purified enzyme, and at cellular level using neuronal and breast cancer cell lines.
View Article and Find Full Text PDFA conserved cysteine located in the signature motif of the catalytic center (H-cluster) of [FeFe]-hydrogenases functions in proton transfer. This residue corresponds to C298 in Clostridium acetobutylicum CaHydA. Despite the chemical and structural difference, the mutant C298D retains fast catalytic activity, while replacement with any other amino acid causes significant activity loss.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2015
Multi-frequency continuous-wave and pulsed EPR techniques are employed to investigate the coordination of nitrogen-containing ligands to Ti(3+)-chloro complexes. Frozen solutions of TiCl3 and TiCl3(Py)3 dissolved in nitrogen-containing solvents have been investigated together with the TiCl3(Py)3 solid-state complex. For these different systems, the hyperfine and nuclear quadrupole data of Ti(3+)-bound (14)N nuclei are reported and discussed in the light of DFT computations, allowing for a detailed description of the microscopic structure of these systems.
View Article and Find Full Text PDFThis paper reports the first characterization of an [FeFe]-hydrogenase from a Clostridium perfringens strain previously isolated in our laboratory from a pilot-scale bio-hydrogen plant that efficiently produces H2 from waste biomasses. On the basis of sequence analysis, the enzyme is a monomer formed by four domains hosting various iron-sulfur centres involved in electron transfer and the catalytic center H-cluster. After recombinant expression in Escherichia coli, the purified protein catalyzes H2 evolution at high rate of 1645 ± 16 s(-1) .
View Article and Find Full Text PDFAqueous solutions of oxalato- and citrato-VO(2+) complexes are prepared, and their ligand exchange reaction is investigated as a function of the amount of citrate present in the aqueous solution via continuous-wave electron paramagnetic resonance (CW EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopy. With a low amount of citrate, monomeric cis-oxalato-VO(2+) complexes occur with a distorted square-pyramidal geometry. As the amount of citrate increases, oxalate is gradually exchanged for citrate.
View Article and Find Full Text PDF