Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, possessing a multimodal pharmacodynamic profile that includes anti-inflammatory and anti-oxidant activities. Carnosine has also shown its ability to modulate cell proliferation, cell cycle arrest, apoptosis, and even glycolytic energy metabolism, all processes playing a key role in the context of cancer. Cancer is one of the most dreaded diseases of the 20th and 21st centuries.
View Article and Find Full Text PDFCurr Res Pharmacol Drug Discov
March 2023
Carnosine is a naturally occurring endogenous dipeptide composed by the ligation of β-alanine and L-histidine performed particularly by tissues with an increased oxidative metabolism such as muscles and brain. In the last 50 years different studies have assessed the role and function of carnosine through numerous , , and clinical studies, demonstrating the multimodal mechanism of action of this dipeptide that includes anti-aggregant, antioxidant, and anti-inflammatory activities. In particular its activity has been investigated in experimental models of cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), and neurodegenerative disorders, such as cerebral ischemia and Alzheimer's disease (AD).
View Article and Find Full Text PDFThe activity of microglia is fundamental for the regulation of numerous physiological processes including brain development, synaptic plasticity, and neurogenesis, and its deviation from homeostasis can lead to pathological conditions, including numerous neurodegenerative disorders. Carnosine is a naturally occurring molecule with well-characterized antioxidant and anti-inflammatory activities, able to modulate the response and polarization of immune cells and ameliorate their cellular energy metabolism. The better understanding of microglia characteristics under basal physiological conditions, as well as the possible modulation of the mechanisms related to its response to environmental challenges and/or pro-inflammatory/pro-oxidant stimuli, are of utmost importance for the development of therapeutic strategies.
View Article and Find Full Text PDFCarbon capture and storage (CCS) offers a possible solution to curb the CO emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty.
View Article and Find Full Text PDF