Publications by authors named "S Matragoon"

Accumulation of the nerve growth factor precursor (proNGF) and its receptor p75(NTR) have been associated with several neurodegenerative diseases in both brain and retina. However, whether proNGF contributes to microvascular degeneration remain unexplored. This study seeks to investigate the mechanism by which proNGF/p75(NTR) induce endothelial cell (EC) death and development of acellular capillaries, a surrogate marker of retinal ischemia.

View Article and Find Full Text PDF

Our previous studies have demonstrated that diabetes-induced oxidative stress alters homeostasis of retinal nerve growth factor (NGF) resulting in accumulation of its precursor, proNGF, at the expense of NGF which plays a critical role in preserving neuronal and retinal function. This imbalance coincided with retinal damage in experimental diabetes. Here we test the hypothesis that alteration of proNGF and NGF levels observed in retina and vitreous will be mirrored in serum of diabetic patients.

View Article and Find Full Text PDF

Hyperglycemia- (HG-) Amadori-glycated albumin- (AGA-) induced activation of microglia and monocytes and their adherence to retinal vascular endothelial cells contribute to retinal inflammation leading to diabetic retinopathy (DR). There is a great need for early detection of DR before demonstrable tissue damages become irreversible. Extracellular adenosine, required for endogenous anti-inflammation, is regulated by the interplay of equilibrative nucleoside transporter with adenosine deaminase (ADA) and adenosine kinase.

View Article and Find Full Text PDF

Ischemic diseases such as stroke and proliferative retinopathy are characterized by hypoxia-driven release of angiogenic factors such as vascular endothelial growth factor (VEGF). However, revascularization of the ischemic areas is inadequate, resulting in impaired neuro-vascular function. We aim to examine the vascular protective effects of candesartan, an angiotensin receptor blocker, in an ischemic retinopathy mouse model.

View Article and Find Full Text PDF