Publications by authors named "S Mastroianni"

Article Synopsis
  • The XENONnT dark matter experiment successfully measured nuclear recoils from solar ^{8}B neutrinos, marking a significant advancement in neutrino detection technology.
  • Using a two-phase time projection chamber with a 5.9 t liquid xenon target, the experiment produced 37 observed events, which surpassed the expected background events, indicating a notable signal.
  • The results provide a measured solar neutrino flux consistent with previous studies and confirm the neutrino cross section predictions aligned with the Standard Model, showcasing the effectiveness of dark matter detectors in neutrino research.
View Article and Find Full Text PDF
The XENONnT dark matter experiment.

Eur Phys J C Part Fields

August 2024

The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.

View Article and Find Full Text PDF

We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}.

View Article and Find Full Text PDF
Article Synopsis
  • The XENONnT experiment conducted the first search for nuclear recoils caused by weakly interacting massive particles (WIMPs) using a 5.9-ton liquid xenon detector.
  • During the experiment, the background noise from radioactive isotopes was minimized, yielding a low electronic recoil background rate of 15.8 events per ton per year per keV.
  • The analysis found no significant excess of nuclear recoil events, leading to an improved upper limit on the WIMP-nucleon interaction cross section, surpassing previous results from the earlier XENON1T experiment.
View Article and Find Full Text PDF

Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from multiply interacting massive particles (MIMPs).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpddt7rh7lfij1g9snbr1gd607sm0vje5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once