Some amino acids are known to mediate immune responses through gut microbiota metabolism in both humans and monogastric animals. However, through the diet, most free amino acids are absorbed in the small intestine and only a small quantity reaches the microbiota-rich colon. To enhance microbial metabolism of amino acids and their potential health benefits, encapsulation strategies are developed for their protection and delivery to the colon.
View Article and Find Full Text PDFWe investigated the effects of fatty acid/ monoglyceride type and amount on the absorption of fat-soluble vitamins. Micelles or vesicles made with either caprylic acid (CA) + monocaprylin (MC) or oleic acid (OA) + monoolein (MO) at low or high concentrations were infused in bile duct-ligated mice. Retinol + retinyl ester and γ-tocopherol intestinal mucosa contents were higher in mice infused with CA + MC than with OA + MO (up to + 350 % for vitamin A and up to + 62 %, for vitamin E; p < 0.
View Article and Find Full Text PDFInvestigating the gastrointestinal fate of food emulsions is critical to unveil their nutritional relevance. To this end, the protocol standardized by COST INFOGEST 2.0 is meaningful for guiding digestion experiments.
View Article and Find Full Text PDFAnnu Rev Food Sci Technol
March 2022
Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination.
View Article and Find Full Text PDF(1) Background: The anthocyanin delphinidin exhibits anti-angiogenic properties both in in vitro and in vivo angiogenesis models. However, in vivo delphinidin is poorly absorbed, thus its modest bioavailability and stability reduce its anti-angiogenic effects. The present work takes advantage of small extracellular vesicle (sEV) properties to enhance both the stability and efficacy of delphinidin.
View Article and Find Full Text PDF