Tropical mountain ecosystems harbor diverse biological communities, making them valuable models for exploring the factors that shape ecological interactions along environmental gradients. We investigated the spatial and temporal drivers of plant-hummingbird interaction networks across three forest types (pine-oak, fir, and subalpine) along a tropical high mountain gradient in western Mexico (2400 to 3700 m.a.
View Article and Find Full Text PDFThe diversification of angiosperms has largely been attributed to adaptive radiation of their pollination and mating systems, which are relevant drivers of the macroevolution processes. The fig (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) interaction is an example of obligate mutualism. Passive and active pollination modes have been associated with morphological traits in both partners.
View Article and Find Full Text PDFBees play a pivotal role as pollinators in crops essential for human consumption. However, the global decline in bee populations poses a significant threat to pollination services and food security worldwide. The loss and degradation of habitats due to land use change are primary factors contributing to bee declines, particularly in tropical forests facing high deforestation rates.
View Article and Find Full Text PDFThe decline of honey bee populations significantly impacts the human food supply due to poor pollination and yield decreases of essential crop species. Given the reduction of pollinators, research into critical landscape components, such as floral resource availability and land use change, might provide valuable information about the nutritional status and health of honey bee colonies. To address this issue, we examine the effects of landscape factors like agricultural area, urban area, and climatic factors, including maximum temperature, minimum temperature, relative humidity, and precipitation, on honey bee hive populations and nutritional health of 326 honey bee colonies across varying landscapes in Mexico.
View Article and Find Full Text PDFBackground And Aims: The majority of the earth's land area is currently occupied by humans. Measuring how terrestrial plants reproduce in these pervasive environments is essential for understanding their long-term viability and their ability to adapt to changing environments.
Methods: We conducted hierarchical and phylogenetically-independent meta-analyses to assess the overall effects of anthropogenic land-use changes on pollination, and male and female fitness in terrestrial plants.