Phages Cassita and Fransoyer were isolated from soil in northwestern Wisconsin using Microbacterium paraoxydans as the host. The genomes of Cassita and Fransoyer are 61,868 bp and 62,277 bp, respectively, with direct terminal repeats. Both phages exhibit siphoviral morphology and are predicted to have lytic life cycles.
View Article and Find Full Text PDFThe main objective of this work was to explore the feasibility to print monoclonal antibody (mAb)-loaded implantable systems using fused-deposition modelling (FDM) to build complex dosage form designs. Indeed, to our knowledge, this work is the first investigation of mAb-loaded devices using FDM. To make this possible, different steps were developed and optimized.
View Article and Find Full Text PDFIn this study, the possibility of producing highly antibody-loaded microparticles with sustained-release properties was evaluated. Polyclonal immunoglobulin G (IgG) was used as a model of antibody and its encapsulation into poly(lactide-co-glycolide) acid (PLGA) microparticles was performed by spray-drying a water-in-oil (w/o) emulsion. It was demonstrated that the use of the Resomer RG505 PLGA allowed an IgG loading of 20% w/w with an encapsulation efficiency higher than 85%.
View Article and Find Full Text PDFThis study assesses the feasibility of printing implantable devices using 3D printing Fused deposition modeling (FDM) technology. The influence of the deposition temperature, the deposition rate and the layer thickness on the printing process and the physical properties of the devices were evaluated. The filaments were composed of neat poly(lactic acid) (PLA) and blends of different plasticizers (polyethylene glycol 400 (PEG 400), triacetine (TA), acetyltriethyl citrate (ATEC) and triethyl citrate (TEC)) at 10% (w/w).
View Article and Find Full Text PDF