The ubiquitination process plays a crucial role in neuronal differentiation and function. Numerous studies have focused on the expression and functions of E3 ligases during these different stages, far fewer on E2 conjugating enzymes. In mice, as in humans, these E2s belong to 17 conjugating enzyme families.
View Article and Find Full Text PDFAbnormal cytoplasmic aggregates containing the TDP-43 protein and its fragments are present in the central nervous system of the majority of patients with amyotrophic lateral sclerosis (ALS) and in patients with frontotemporal lobar degeneration (FTLD). Many studies have focused on the C-terminal cleavage products of TDP-43 (CTFs), but few have focused on the N-terminal products (NTFs), yet several works and their protein domain composition support the involvement of NTFs in pathophysiology. In the present study, we expressed six NTFs of TDP-43, normally generated in vivo by proteases or following the presence of pathogenic genetic truncating variants, in HEK-293T cells.
View Article and Find Full Text PDFThe ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far.
View Article and Find Full Text PDFAmyotrophic Lateral Sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons. The pathophysiology of ALS is not well understood but TDP-43 proteinopathy (aggregation and mislocalization) is one of the major phenomena described. Several factors can influence TDP-43 behavior such as mild pH alterations that can induce conformational changes in recombinant TDP-43, increasing its propensity to aggregate.
View Article and Find Full Text PDF