Publications by authors named "S Mangani"

Cancer remains a significant global health concern. Breast cancer is a multifaceted and prevalent disease influenced by several factors, among which estrogen receptors (ERs) and the extracellular matrix (ECM) play pivotal roles. ERs, encompassing ERα and ERβ, exert significant diversity on tumor behavior, cell signaling, invasion, and metastatic potential, thus guiding breast cancer prognosis.

View Article and Find Full Text PDF

Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies.

View Article and Find Full Text PDF

Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles () and 2-guanidino benzimidazoles (), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS).

View Article and Find Full Text PDF

Pteridine reductase 1 (PTR1) is a catalytic protein belonging to the folate metabolic pathway in Trypanosmatidic parasites. PTR1 is a known target for the medicinal chemistry development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. In previous studies, new nitro derivatives were elaborated as PTR1 inhibitors.

View Article and Find Full Text PDF

Recent interest in the special beer category has encouraged the search for novel brewing materials, including new ingredients and novel yeast strains, in order to differentiate the finished products. The aim of this work was to select non-brewing strains for the production of a fruit beer with raspberry. The in vitro tests and the wort fermentations allowed the selection of two sourdough strains, showing high maltose and maltotriose consumption, high ethanol production, and high viability.

View Article and Find Full Text PDF