Publications by authors named "S Mamishin"

We report the use of a pyrolytic carbon cone nanotip as field emission cathode inside a modern 200 kV dedicated scanning transmission electron microscope. We show an unprecedented improvement in the probe current stability while maintaining all the fundamental properties of a cold field emission source such as a small angular current density together with a high brightness. We have also studied the influence of the low extraction voltage, as enabled by the nanosized apex of the cones, on the electron optics properties of the source that prevent the formation of a virtual beam cross-over of the gun.

View Article and Find Full Text PDF

A newly developed carbon cone nanotip (CCnT) has been used as field emission cathode both in low voltage SEM (30 kV) electron source and high voltage TEM (200 kV) electron source. The results clearly show, for both technologies, an unprecedented stability of the emission and the probe current with almost no decay during 1h, as well as a very small noise (rms less than 0.5%) compared to standard sources which use tungsten tips as emitting cathode.

View Article and Find Full Text PDF

Colossal magnetoresistance is a dramatic decrease in resistivity caused by applied magnetic fields, and has been the focus of much research because of its potential for magnetic data storage using materials such as manganites. Although extensive microscopy and theoretical studies have shown that colossal magnetoresistance involves competing insulating and ferromagnetic conductive phases, the mechanism underlying the effect remains unclear. Here, by directly observing magnetic domain walls and flux distributions using cryogenic Lorentz microscopy and electron holography, we demonstrate that an applied magnetic field assists nucleation and growth of an ordered ferromagnetic phase.

View Article and Find Full Text PDF