Synchrony in neuronal networks is crucial for cognitive functions, motor coordination, and various neurological disorders. While traditional research has focused on pairwise interactions between neurons, recent studies highlight the importance of higher-order interactions involving multiple neurons. Both types of interactions lead to complex synchronous spatiotemporal patterns, including the fascinating phenomenon of chimera states, where synchronized and desynchronized neuronal activity coexist.
View Article and Find Full Text PDFMotile cilia are evolutionarily conserved organelles. In humans, multiciliated cells (MCCs), assembling several hundred motile cilia on their apical surface, are components of the monolayer epithelia lining lower and upper airways, brain ventricles, and parts of the reproductive tracts, the fallopian tube and uterus in females, and efferent ductules in males. The coordinated beating of cilia generates a force that enables a shift of the tubular fluid, particles, or cells along the surface of the ciliated epithelia.
View Article and Find Full Text PDFBackground: Suryanamaskar (SN) is a popular yogic practice due to its health benefits and fitness promises. This study aims to assess the acute effects of different paces of SN on cardiorespiratory responses and heart rate variability (HRV).
Methods: In this self-as-control comparative study, seventeen male yoga practitioners performed three rounds of SN at fast (FSN), slow (SSN), and graded (GSN) pace in a randomly allocated sequence.
This paper employs Topological Data Analysis (TDA) to detect extreme events (EEs) in the stock market at a continental level. Previous approaches, which analyzed stock indices separately, could not detect EEs for multiple time series in one go. TDA provides a robust framework for such analysis and identifies the EEs during the crashes for different indices.
View Article and Find Full Text PDF