Multidrug ABC transporters harness the energy of ATP binding and hydrolysis to translocate substrates out of the cell and detoxify them. While this involves a well-accepted alternating access mechanism, molecular details of this interplay are still elusive. Rhodamine6G binding on a catalytic inactive mutant of the homodimeric multidrug ABC transporter BmrA triggers a cooperative binding of ATP on the two identical nucleotide-binding-sites, otherwise michaelian.
View Article and Find Full Text PDFCandida albicans and C. glabrata express exporters of the ATP-binding cassette (ABC) superfamily and address them to their plasma membrane to expel azole antifungals, which cancels out their action and allows the yeast to become multidrug resistant (MDR). In a way to understand this mechanism of defense, we describe the purification and characterization of Cdr1, the membrane ABC exporter mainly responsible for such phenotype in both species.
View Article and Find Full Text PDFConcentration of pure membrane proteins in detergent solution results in detergent concentration, albeit in unknown amounts. This phenomenon is observed in every lab working on membrane proteins, but has seldom been investigated. In this study, we explored the behavior of detergents mixed with membrane proteins during the step of sample concentration using centrifugal devices.
View Article and Find Full Text PDFThe production and purification are the first steps required in any functional or structural study of a protein of interest. In the case of membrane proteins, these tasks can be difficult due to low expression levels and the necessity to extract them from their membrane environment. This chapter describes a convenient method based on GFP tagged to the membrane protein to facilitates these steps.
View Article and Find Full Text PDFWe describe here the overproduction and oriented membrane insertion of membrane protein inside intracellular vesicles named heterologous caveolae within E. coli. The method is described with BmrA, a multidrug efflux pump from Bacillus subtilis.
View Article and Find Full Text PDF