Publications by authors named "S MIYARA"

Myocardial injury may ultimately lead to adverse ventricular remodeling and development of heart failure (HF), which is a major cause of morbidity and mortality worldwide. Given the slow pace and substantial costs of developing new therapeutics, drug repurposing is an attractive alternative. Studies of many organs, including the heart, highlight the importance of the immune system in modulating injury and repair outcomes.

View Article and Find Full Text PDF

The close interaction between neurons and astrocytes has been extensively studied. However, the specific behavior of these cells after ischemia-reperfusion injury and hypothermia remains poorly characterized. A growing body of evidence suggests that mitochondria function and putative transference between neurons and astrocytes may play a fundamental role in adaptive and homeostatic responses after systemic insults such as cardiac arrest, which highlights the importance of a better understanding of how neurons and astrocytes behave individually in these settings.

View Article and Find Full Text PDF

Senescence plays a key role in various physiological and pathological processes. We reported that injury-induced transient senescence correlates with heart regeneration, yet the multi-omics profile and molecular underpinnings of regenerative senescence remain obscure. Using proteomics and single-cell RNA sequencing, here we report the regenerative senescence multi-omic signature in the adult mouse heart and establish its role in neonatal heart regeneration and agrin-mediated cardiac repair in adult mice.

View Article and Find Full Text PDF

Research interest in the mechanisms enabling plant-parasitic nematodes to adjust their physiological performance and cope with changing temperatures has intensified in light of global warming. Here, we show that geographically distinct populations of the root-knot nematode , which is prevalent in the three main pepper-growing regions in Israel-Carmel Valley (Carmel), Jordan Valley (JV), and Arava Rift (Arava)-possess persistent differences in their thermal acclimation capacity, which affect pre- and postembryonic development. The optimal temperature for embryonic growth completion was 25°C for the Carmel population; 25 and 30°C for the JV population; and 30°C for the Arava population.

View Article and Find Full Text PDF