Publications by authors named "S M Zakian"

Frontotemporal dementia with parkinsonism-17 is a neurodegenerative disease characterised by pathological aggregation of the tau protein with the formation of neurofibrillary tangles and subsequent neuronal death. The inherited form of frontotemporal dementia can be caused by mutations in several genes, including the MAPT gene on chromosome 17, which encodes the tau protein. As there are currently no medically approved treatments for frontotemporal dementia, there is an urgent need for research using in vitro cell models to understand the molecular genetic mechanisms that lead to the development of the disease, to identify targets for therapeutic intervention and to test potential drugs to prevent neuronal death.

View Article and Find Full Text PDF

The clinical significance of numerous cardiovascular gene variants remains to be determined. CRISPR/Cas9 allows for the introduction and/or correction of a certain variant in induced pluripotent stem cells (iPSCs). The resulting isogenic iPSC lines can be differentiated into cardiomyocytes and used as a platform to assess the pathogenicity of the variant.

View Article and Find Full Text PDF
Article Synopsis
  • * The study utilized CRISPR/Cas9 to create a specific mutation in induced pluripotent stem cells (iPSCs) from a healthy donor, allowing the researchers to analyze the effects of a variant found in an HCM patient.
  • * Cardiomyocytes developed from the mutated iPSCs displayed characteristic HCM traits, including enlarged size and altered gene expression, confirming the pathogenicity of the p.M659I variant.
View Article and Find Full Text PDF

Familial Mediterranean fever (FMF) is a systemic autoinflammatory disorder caused by inherited mutations in the (Mediterranean FeVer) gene, located on chromosome 16 (16p13.3) and encoding the pyrin protein. Despite the existing data on mutations, the exact mechanism of their effect on the development of the pathological processes leading to the spontaneous and recurrent autoinflammatory attacks observed in FMF, remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • - Endoplasmic reticulum (ER) stress is linked to various diseases, especially Parkinson’s disease (PD), which currently has no cure, highlighting the need to understand its underlying mechanisms.
  • - Genetically encoded biosensors, particularly those utilizing fluorescent proteins, enable real-time study of molecular events in living cells, enhancing research on diseases.
  • - By using CRISPR technology to create a specific cell model from induced pluripotent stem cells (iPSCs) expressing a biosensor for the UPR system, researchers can investigate how ER stress activates certain pathways and develop potential treatment strategies.
View Article and Find Full Text PDF