Thiazolidinediones (TZDs) are potent insulin-sensitizing compounds and high-affinity ligands for the transcription factor peroxisomal proliferator-activated receptor gamma. The mechanism through which TZDs improve insulin sensitivity, however, is not clear. In this study, we asked whether the ability of TZD to suppress and antagonize TNF alpha is an underlying mechanism for its molecular and physiological effects, using obese (ob/ob) mice lacking TNF alpha function.
View Article and Find Full Text PDFAdipocyte fatty acid-binding protein, aP2, is a member of the intracellular fatty acid binding protein family. Previously, studies have shown increased insulin sensitivity in aP2-deficient mice with dietary obesity. Here, we asked whether aP2-related alterations in lipolytic response and insulin production are features of obesity-induced insulin resistance and investigated the effects of aP2-deficiency on glucose homeostasis and lipid metabolism in ob/ob mice, a model of extreme obesity.
View Article and Find Full Text PDFSevere quantitative and qualitative brown adipocyte defects are common in obesity. To investigate whether aberrant expression of tumor necrosis factor alpha (TNF-alpha) in obesity is involved in functional brown fat atrophy, we have studied genetically obese (ob/ob) mice with targeted null mutations in the genes encoding the two TNF receptors. The absence of both TNF receptors or p55 receptor alone resulted in a significant reduction in brown adipocyte apoptosis and an increase in beta(3)-adrenoreceptor and uncoupling protein-1 expression in obese mice.
View Article and Find Full Text PDFTumour necrosis factor-alpha (TNFalpha) is a multifunctional cytokine that exerts a myriad of biological actions in numerous different tissues including adipocytes through its two distinct cell surface receptors. To address the role of each TNF receptor in the biological actions of TNFalpha in adipocytes, we have developed four new preadipocyte cell lines. These were established from wild type controls (TNFR1(+/+)R2(+/+)) and from mice lacking TNFR1 (TNFR1(-/-)), TNFR2 (TNFR2(-/-)) or both (TNFR1(-/-)R2(-/-)).
View Article and Find Full Text PDFUncoupling protein 2 (UCP2) has been proposed to play a prominent role in the regulation of energy balance. UCP2 mRNA expression is upregulated in white adipose tissue (WAT) and liver, but is not altered in skeletal muscle in genetically obese ob/ob mice. The mechanisms involved in the upregulation of UCP2 in obesity have not been investigated.
View Article and Find Full Text PDF