Publications by authors named "S M Troy"

Rebound of SARS-CoV-2 shedding or COVID-19 signs and symptoms has been described after treatment with nirmatrelvir/ritonavir (Paxlovid). The direct association of nirmatrelvir/ritonavir to COVID-19 rebound remains unclear because most reports are based on individual cases or nonrandomized studies. Viral RNA shedding data from two phase 2/3, randomized, double-blind, placebo-controlled clinical trials of nirmatrelvir/ritonavir (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients [EPIC-HR] and Evaluation of Protease Inhibition for COVID-19 in Standard-Risk Patients [EPIC-SR]) were analyzed to investigate the role of nirmatrelvir/ritonavir treatment in COVID-19 rebound.

View Article and Find Full Text PDF

Inactivated Polio Vaccines (IPV) and live Oral Polio Vaccine (OPV) were introduced in the mid-20th century, and their coordinated worldwide use led to almost complete elimination of the disease, with only one serotype of poliovirus remaining endemic in just two countries. Polio eradication will lead to discontinuation of OPV use and its replacement with IPV or other vaccines that are currently under development that will need to be tested in clinical trials. Despite decades of research, questions remain about the serological correlates of polio vaccine efficacy, specifically whether the vaccines are equally protective against immunologically different strains of the same serotype.

View Article and Find Full Text PDF

The landscape for the development of therapeutics for prevention and treatment of human immunodeficiency virus (HIV)-1 infection has pivoted towards long-acting antiretrovirals (LA-ARVs). LA-ARVs have the potential to transform global implementation of HIV-1 prevention and treatment strategies. The ability to identify potential knowledge gaps early in development, proactively address missing information or data gaps, and strategically leverage all the available information is the key to streamline the development of safe and effective LA-ARV therapeutics.

View Article and Find Full Text PDF

Juveniles are typically less resistant (more susceptible) to infectious disease than adults, and this difference in susceptibility can help fuel the spread of pathogens in age-structured populations. However, evolutionary explanations for this variation in resistance across age remain to be tested.One hypothesis is that natural selection has optimized resistance to peak at ages where disease exposure is greatest.

View Article and Find Full Text PDF