Publications by authors named "S M Suturin"

Thin (~50 nm thick) BaM hexaferrite (BaFeO) films were grown on (1-102) and (0001) cut α-AlO (sapphire) substrates via laser molecular beam epitaxy using a one- or two-stage growth protocol. The advantages of a two-stage protocol are shown. The surface morphology, structural and magnetic properties of films were studied using atomic force microscopy, reflected high-energy electron diffraction, three-dimensional X-ray diffraction reciprocal space mapping, powder X-ray diffraction, magneto-optical, and magnetometric methods.

View Article and Find Full Text PDF

Thin films of BaM hexaferrite (BaFeO) were grown on α-AlO(0001) substrates by laser molecular beam epitaxy. Structural, magnetic, and magneto-optical properties were studied using medium-energy ion scattering, energy dispersive X-ray spectroscopy, atomic force microscopy, X-ray diffraction, magneto-optical spectroscopy, and magnetometric techniques, and the dynamics of magnetization by ferromagnetic resonance method. It was shown that even a short time annealing drastically changes the structural and magnetic properties of films.

View Article and Find Full Text PDF

In the present paper we discuss correlations between crystal structure and magnetic properties of epitaxial ε-FeO films grown on GaN. The large magnetocrystalline anisotropy and room temperature multiferroic properties of this exotic iron oxide polymorph, make it a perspective material for the development of low power consumption magnetic media storage devices. Extending our recent progress in PLD growth of ε-FeO on the surface of technologically important nitride semiconductors, we apply reciprocal space tomography by electron and x-ray diffraction to investigate the break of crystallographic symmetry occurring at the oxide-nitride interface resulting in the appearance of anisotropic crystallographic disorder in the sub-100 nm ε-FeO films.

View Article and Find Full Text PDF

The metastable ε-FeO is known to be the most intriguing ferrimagnetic and multiferroic iron oxide phase exhibiting a bunch of exciting physical properties both below and above room temperature. The present paper unveils the structural and magnetic peculiarities of a few nm thick interface layer discovered in these films by a number of techniques. The polarized neutron reflectometry data suggests that the interface layer resembles GaFeO in composition and density and is magnetically softer than the rest of the ε-FeO film.

View Article and Find Full Text PDF

Thin (4-20 nm) yttrium iron garnet (YFeO, YIG) layers have been grown on gadolinium gallium garnet (GdGaO, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700-1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface.

View Article and Find Full Text PDF