Nickel-catalyzed cross-electrophile coupling (XEC) reactions of (hetero)aryl electrophiles represent appealing alternatives to palladium-catalyzed methods for biaryl synthesis, but they often generate significant quantities of homocoupling and/or proto-dehalogenation side products. In this study, an informer library of heteroaryl chloride and aryl bromide coupling partners is used to identify Ni-catalyzed XEC conditions that access high selectivity for the cross-product when using equimolar quantities of the two substrates. Two different catalyst systems are identified that show complementary scope and broad functional-group tolerance, and time-course data suggest that the two methods follow different mechanisms.
View Article and Find Full Text PDFMethanolation of olefins is introduced as a new low-pressure synthetic pathway to C1 elongated alcohols. Formally, HCOH is added to the C=C bond in a 100 % atom efficient manner. Mechanistically, the overall transformation occurs as a tandem reaction sequence by combining the dehydrogenation of methanol to syngas at a CO : H ratio of 1 : 2 with subsequent hydroformylation to the corresponding aldehyde and its final hydrogenation to the alcohol.
View Article and Find Full Text PDFSacrificial anodes composed of inexpensive metals such as Zn, Fe, and Mg are widely used to support electrochemical nickel-catalyzed cross-electrophile coupling (XEC) reactions, in addition to other reductive electrochemical transformations. Such anodes are appealing because they provide a stable counter-electrode potential and typically avoid interference with the reductive chemistry. The present study outlines the development of an electrochemical Ni-catalyzed XEC reaction that streamlines access to a key pharmaceutical intermediate.
View Article and Find Full Text PDFAnn Otol Rhinol Laryngol
February 2025