Publications by authors named "S M Secor"

Fibroblast growth factor (FGF) 23 is a bone-derived hormone that promotes renal phosphate excretion. Serum FGF23 is increased in chronic kidney disease (CKD) and contributes to pathologic cardiac hypertrophy by activating FGF receptor (FGFR) 4 on cardiac myocytes, which might lead to the high cardiovascular mortality in CKD patients. Increases in serum FGF23 levels have also been observed following endurance exercise and in pregnancy, which are scenarios of physiologic cardiac hypertrophy as an adaptive response of the heart to increased demand.

View Article and Find Full Text PDF

The gut microbial communities of mammals provide numerous benefits to their hosts. However, given the recent development of the microbiome field, we still lack a thorough understanding of the variety of ecological and evolutionary factors that structure these communities across species. Metabarcoding is a powerful technique that allows for multiple microbial ecology questions to be investigated simultaneously.

View Article and Find Full Text PDF

Genital evolution can be driven by diverse selective pressures. Across taxa we see evidence of covariation between males and females, as well as divergent genital morphologies between closely related species. Quantitative analyses of morphological changes in coevolving male and female genitalia have not yet been shown in vertebrates.

View Article and Find Full Text PDF

Background: Snakes exhibit extreme intestinal regeneration following months-long fasts that involves unparalleled increases in metabolism, function, and tissue growth, but the specific molecular control of this process is unknown. Understanding the mechanisms that coordinate these regenerative phenotypes provides valuable opportunities to understand critical pathways that may control vertebrate regeneration and novel perspectives on vertebrate regenerative capacities.

Results: Here, we integrate a comprehensive set of phenotypic, transcriptomic, proteomic, and phosphoproteomic data from boa constrictors to identify the mechanisms that orchestrate shifts in metabolism, nutrient uptake, and cellular stress to direct phases of the regenerative response.

View Article and Find Full Text PDF

The American alligator, , is an opportunistic carnivore that experiences an ontogenetic shift in food and feeding habits with an increase in body size. Alligators frequently feed on invertebrates and small fish as neonates and transition to feeding less frequently on larger vertebrates as they grow. We hypothesized that alligators experience an ontogenetic shift in the regulation of intestinal performance-modest regulation with frequent feeding early in life and wider regulation with less frequent feeding as they increase in body size.

View Article and Find Full Text PDF