Several mosquitoes transmit human pathogens by blood feeding, with the gut being the main entrance for the pathogens. Thus, the gut epithelium defends the pathogens by eliciting potent immune responses. However, it was unclear how the mosquito gut discriminates pathogens among various microflora in the lumen.
View Article and Find Full Text PDFArch Insect Biochem Physiol
February 2022
The red imported fire ant (RIFA), Solenopsis invicta Buren is native to South America and known as a global problematic invasive species. At low temperatures, several investigations have demonstrated an increase in glycerol as a primary rapid cold hardening (RCH) component and an increase in the supercooling point. Two genes, glycerol-3-phosphate dehydrogenase (GPDH) and glycerol kinase (GK), have been identified as being involved in the glycerol production process.
View Article and Find Full Text PDFArch Insect Biochem Physiol
November 2021
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), the cotton bollworm, is a destructive pest which is famous for its resistance to a variety of insecticides. RNA interference is a posttranscriptional gene silencing mechanism that has become a popular tool to control insect pests, triggered by double-stranded RNAs (dsRNAs). The effect of ingestion and injection delivery methods of dsRNA related to some protease genes including Trypsin (Ha-TRY39 and Ha-TRY96), Chymotrypsin (Ha-CHY), and Cathepsin L (Ha-CAT) on growth and development of H.
View Article and Find Full Text PDFIn insect midgut, prostaglandins (PGs) play a crucial role in defending bacterial and malarial pathogens. However, little is known about the PG signalling pathway in the midgut. A dual oxidase () with presumed function of catalysing reactive oxygen species (ROS) production in the midgut was identified in beet armyworm, .
View Article and Find Full Text PDFTwo entomopathogenic bacteria, and , are known to be able to synthesize and secrete eicosanoid biosynthesis inhibitors (EIBs) that can enhance pathogenicity of (Bt) against different target insects. Such enhancements can be explained by the suppression of immune responses in the hemocoel by EIBs. However, little is known about the role of EIBs in the defense against Bt pathogenicity in the gut.
View Article and Find Full Text PDF