The glutamatergic system, located throughout the brain including the prefrontal cortex and nucleus accumbens, plays a critical role in reward and reinforcement processing, and mediates the psychotropic effects of addictive drugs such as cocaine. Glutamate transporters, including EAAT2/GLT-1, are responsible for removing glutamate from the synaptic cleft. Reduced expression of GLT-1 following chronic cocaine use and abstinence has been reported.
View Article and Find Full Text PDFClavulanic acid (CLAV) is a component of Augmentin® that preserves antibiotic efficacy by inhibiting β-lactamase activity. It also enhances cellular glutamate uptake and is a potential CNS therapeutic. Because increased glutamate transmission in brain reward circuits facilitates methamphetamine (METH) locomotor activation and sensitization, we tested the hypothesis that CLAV inhibits acute and sensitized locomotor responses to METH in mice and investigated effects of CLAV on METH-induced changes in glutaminase, the major glutamate-producing enzyme in the brain.
View Article and Find Full Text PDFExcitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties .
View Article and Find Full Text PDFWhile agonists of mu (MOR) and kappa (KOR) opioid receptors have analgesic effects, they produce euphoria and dysphoria, respectively. Other side effects include respiratory depression and addiction for MOR agonists and sedation for KOR agonists. We reported that 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-{[4'-(2'-cyanopyridyl)]carboxamido}cmorphinan (NCP) displayed potent KOR full agonist and MOR partial agonist activities (58%) with 6.
View Article and Find Full Text PDF