Publications by authors named "S M Rajendran"

Background: The accessibility and outcomes of cyclin-dependent kinase 4 and 6 inhibitors (CDKi) in metastatic breast cancer (MBC) according to demographic factors are unknown.

Research Design And Methods: Retrospective review of patients with ER+ MBC prescribed first-line CDKi therapy from January 2015 through December 2022. Abstraction included time from CDKi prescription to drug initiation (TTI), time from CDKi initiation to progression (TTP), time from CDKi initiation to death or 6/30/2022, and variables (age, race, partner status, insurance type, BMI, number of comorbidities).

View Article and Find Full Text PDF

Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity.

View Article and Find Full Text PDF

Pneumonia, a leading cause of mortality in children under five, is usually diagnosed through chest X-ray (CXR) images due to its efficiency and cost-effectiveness. However, the shortage of radiologists in the Least Developed Countries (LDCs) emphasizes the need for automated pneumonia diagnostic systems. This article presents a Deep Learning model, Zero-Order Optimized Convolutional Neural Network (ZooCNN), a Zero-Order Optimization (Zoo)-based CNN model for classifying CXR images into three classes, Normal Lungs (NL), Bacterial Pneumonia (BP), and Viral Pneumonia (VP); this model utilizes the Adaptive Synthetic Sampling (ADASYN) approach to ensure class balance in the Kaggle CXR Images (Pneumonia) dataset.

View Article and Find Full Text PDF

Present work describes a sol-gel assisted one-pot synthesis of mesoporous Fe₂O₃-TiO₂ nanocomposites (TiFe) with different Ti:Fe ratios, and fabrication of Ag-integrated with TiFe nanocomposites (TiFeAg) by a chemical reduction method and demonstrated for high solar H2 generation activity in direct sunlight. Enhanced solar H2 production is attributed to the light absorption from entire UV+Visible region of solar spectrum combined with Schottky (Ag-semiconductor) and heterojunctions (TiO2-Fe2O3), as evidenced from HRTEM and various characterization studies.  TiFeAg-2 thin film (1 wt% Ag-loaded TiFe-4) displayed the highest activity with a solar H2 yield of 7.

View Article and Find Full Text PDF