Bone tissue regeneration remains a significant challenge in clinical settings due to the complexity of replicating the mechanical and biological properties of bone environment. This study addresses this challenge by proposing a hybrid scaffold designed to enhance both bioactivity and physical stability for bone tissue regeneration. This research is the fisrt to develop a rigid 3D structure composed of polycaprolactone (PCL) and hydroxyapatite nanoparticles (nHA) integrated with a bioink containing human dental pulp stem/stromal cells (hDPSCs), alginate, nHA and collagen (Col).
View Article and Find Full Text PDFWater pollution poses a global threat to ecosystems and human health and is driven by the presence of various contaminants in wastewater, including nano- and microplastics. Despite the magnitude of this problem, the majority of global wastewater is released untreated into water bodies. To combat this issue, a multi-strategy approach is needed.
View Article and Find Full Text PDFMelanoma is a type of skin cancer considered aggressive due to its high metastatic ability and rapid progression to other tissues and organs. BDE-209 (2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether) is an additive used as a flame retardant and classified as a persistent organic pollutant that has a high bioaccumulation capacity due to its lipophilic nature. This substance has already been detected in rivers, air, soil, plants and even in different human biological samples, such as plasma, umbilical cord blood and breast milk, revealing a great concern to human populations.
View Article and Find Full Text PDFNotwithstanding the advances achieved in the last decades in the field of synthetic bone substitutes, the development of biodegradable 3D-printed scaffolds with ideal mechanical and biological properties remains an unattained challenge. In the present work, a new approach to produce synthetic bone grafts that mimic complex bone structure is explored. For the first time, three scaffolds of various composition, namely polycaprolactone (PCL), PCL/hydroxyapatite nanoparticles (HANp) and PCL/HANp/diacrylate poly(ethylene glycol) (PEGDA), were manufactured by extrusion.
View Article and Find Full Text PDFAdditive manufacturing or 3D printing applying polycaprolactone (PCL)-based medical devices represents an important branch of tissue engineering, where the sterilization method is a key process for further safe application in vitro and in vivo. In this study, the authors intend to access the most suitable gamma radiation conditions to sterilize PCL-based scaffolds in a preliminary biocompatibility assessment, envisioning future studies for airway obstruction conditions. Three radiation levels were considered, 25 kGy, 35 kGy and 45 kGy, and evaluated as regards their cyto- and biocompatibility.
View Article and Find Full Text PDF