Physiological processes in organisms exhibit circadian rhythms that optimize fitness and anticipate environmental changes. Luminal signals such as food or metabolites synchronize bowel activity, and disruptions in these rhythms are linked to metabolic disorders and gastrointestinal inflammation. To characterize the intrinsic intestinal rhythms and assess disruptions due to continuous darkness or light exposure, C57BL/6 mice were exposed to standard light-dark conditions or continuous light/darkness for 48 h, with evaluations at four timepoints.
View Article and Find Full Text PDFPharmaceuticals (Basel)
September 2024
Skin inflammation associated with chronic diseases involves a direct role of keratinocytes in its immunopathogenesis, triggering a cascade of immune responses. Despite this, highly targeted treatments remain elusive, highlighting the need for more specific therapeutic strategies. In this study, nanocapsules containing quinizarin (QZ/NC) were developed and evaluated in an in vitro model of keratinocyte-mediated inflammation, incorporating the action of photodynamic therapy (PDT) and analyzing permeation in a 3D skin model.
View Article and Find Full Text PDFParadoxical sleep deprivation (PSD) presents different effects on metabolism and neurological functions. In addition, over long duration, sleep restriction (SR) can promote permanent changes. The prostate is an endocrine-dependent organ with homeostatic regulation directly related to hormone levels.
View Article and Find Full Text PDFFor decades, animal models have been the standard approach in drug research and development, as they are required by regulations in the transition from preclinical to clinical trials. However, there is growing ethical and scientific concern regarding these trials, as 80 % of the therapeutic potential observed in pre-clinical studies are often unable to be replicated, despite demonstrating efficacy and safety. In response to this, Tissue Engineering has emerged as a promising alternative that enables the treatment of various diseases through the production of biological models for advanced biological assays or through the direct development of tissue repairs or replacements.
View Article and Find Full Text PDFPiperine, an active plant alkaloid from black pepper ), has several pharmacological effects, namely antioxidant, anti-inflammatory and immunomodulatory effects, which involve inhibiting molecular events associated with various stages of cancer development. The aim of this study was to investigate the molecular mechanisms of action of piperine in relation to its potential anticancer effect on head and neck cancer cells. Parameters related to neoplastic potential and cytokine, protein and gene expression were investigated in head and neck cancer cell lines (HEp-2 and SCC-25) treated with piperine.
View Article and Find Full Text PDF