Publications by authors named "S M Nie"

Skin-like sensors capable of detecting multiple stimuli simultaneously have great potential in cutting-edge human-machine interaction. However, realizing multimodal tactile recognition beyond human tactile perception still faces significant challenges. Here, an extreme environments-adaptive multimodal triboelectric sensor was developed, capable of detecting pressure/temperatures beyond the range of human perception.

View Article and Find Full Text PDF

Lightweight and robust self-powered wearable devices are of great importance in rehabilitation and medical assistance, but this places greater demands on the development of functional materials. In particular, a balance between reducing the weight of materials and enhancing their mechanical performance is urgently needed. Here, this study reports a design strategy based on a cross-scale strengthening mechanism, which endows triboelectric materials with mechanically robust properties, and can withstand more than 16,600 times its weight without any deformation.

View Article and Find Full Text PDF

Because of the existence of moisture in indoor air, it is still a serious challenge to capture formaldehyde indoors with the metal-organic material Fe-HHTP-MOF. To explore the relationship between the structure and performance of Fe-HHTP-MOF in dry and humid air, molecular dynamics simulation was used to study the adsorption amount of Fe-HHTP-MOF for formaldehyde and water under different temperatures and adsorption pressures, as well as the adsorption amount of Fe-HHTP-MOF for formaldehyde in the presence of both water and formaldehyde, and the differences in adsorption of formaldehyde and water by Fe-HHTP-MOF were compared and analyzed when water coexisted. The results show that under single-component isothermal adsorption, the hydrogen bond energy formed by Fe-HHTP-MOF adsorbing HO molecules is much greater than the van der Waals energy formed by adsorbing HCHO molecules.

View Article and Find Full Text PDF

Irrespective of the specific see-through device, obtaining optimal transparency remains the primary goal. In this work, we introduce a general strategy to enhance the transparency of various see-through devices. We achieve this by structuring the colored functional materials into imperceptible three-dimensional mesh lines, addressing a common challenge in multi-layer structures where each layer causes a reduction in transparency due to their color or opacity.

View Article and Find Full Text PDF

Radix Aconiti Lateralis Preparata (Fuzi) polysaccharide (FZP) is a key bioactive macromolecule derived from the root of Aconitum carmichaeli Debx. FZP has a variety of biological activities, including immunomodulatory, anti-tumor, anti-depressant, organ-protective, hypoglycemic, anti-inflammatory, and other activities. The biological activities of polysaccharides are closely related to their structures, and different extraction and purification methods will yield different polysaccharide structures.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: A non-numeric value encountered

Filename: controllers/Author.php

Line Number: 219

Backtrace:

File: /var/www/html/application/controllers/Author.php
Line: 219
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: A non-numeric value encountered

Filename: libraries/Pagination.php

Line Number: 413

Backtrace:

File: /var/www/html/application/controllers/Author.php
Line: 274
Function: create_links

File: /var/www/html/index.php
Line: 316
Function: require_once