Publications by authors named "S M Mirkin"

Using the Telomere-to-Telomere reference, we assembled the distribution of simple repeat lengths present in the human genome. Analyzing over two hundred mammalian genomes, we found remarkable consistency in the shape of the distribution across evolutionary epochs. All observed genomes harbor an excess of long repeats, which are prone to developing into repeat expansion disorders.

View Article and Find Full Text PDF

H-DNA is an intramolecular DNA triplex formed by homopurine/homopyrimidine mirror repeats. Since its discovery, the field has advanced from characterizing the structure to discovering its existence and role . H-DNA interacts with cellular machinery in unique ways, stalling DNA and RNA polymerases and causing genome instability.

View Article and Find Full Text PDF

Trinucleotide repeats, including Friedreich's ataxia (GAA) repeats, become pathogenic upon expansions during DNA replication and repair. Here, we show that deficiency of the essential replisome component Mcm10 dramatically elevates (GAA) repeat instability in a budding yeast model by loss of proper CMG helicase interaction. Supporting this conclusion, live-cell microscopy experiments reveal increased replication fork stalling at the repeat in mcm10-1 cells.

View Article and Find Full Text PDF
Article Synopsis
  • Over 50 hereditary degenerative disorders are linked to the expansion of short tandem DNA repeats (STRs), especially (GAA) repeats, which are associated with diseases like Friedreich's ataxia.
  • Researchers used a CRISPR-Cas9 nickase system to study the impact of introducing targeted DNA nicks near (GAA) repeats, discovering that nicks 5' of the repeat significantly boosted expansion rates and sizes in dividing cells.
  • The study suggests that nicks can convert to double-strand breaks during DNA replication, resulting in repeat expansions, and also showed that 5' nicks can enhance expansion frequency in nondividing yeast cells, though less than in dividing cells.
View Article and Find Full Text PDF

Two-dimensional neutral/neutral gel-electrophoresis (2DGE) emerged as a benchmark technique to analyze DNA replication through natural impediments. This protocol describes how to analyze replication fork progression through structure-prone, expandable DNA repeats within the simian virus 40 (SV40)-based episome in human cells. In brief, upon plasmid transfection into human cells, replication intermediates are isolated by the modified Hirt protocol and treated with the DpnI restriction enzyme to remove non-replicated DNA.

View Article and Find Full Text PDF