Publications by authors named "S M Lensu"

Introduction: A growing body of literature associates branched-chain amino acid (BCAA) catabolism to increased fatty acid oxidation and better metabolic health. Hence, BCAA-rich diets may improve body composition and muscle protein synthesis. However, the role of individual characteristics such as a low aerobic fitness, a well-established risk factor for cardio-metabolic diseases, has not been studied.

View Article and Find Full Text PDF

Bone is influenced by many factors such as genetics and mechanical loading, but the short-term physiological effects of these factors on bone (re)modelling are not well characterised. This study investigated the effects of endurance trainability phenotype, sex, and interval running training (7-week intervention) on bone collagen formation in rats using a deuterium oxide stable isotope tracer method. Bone samples of the femur diaphysis, proximal tibia, mid-shaft tibia, and distal tibia were collected after necropsy from forty-six 9 ± 3-month male and female rats selectively bred for yielding low (LRT) or high (HRT) responses to endurance training.

View Article and Find Full Text PDF

Hippocampus is essential for episodic memory formation, lesion studies demonstrating its role especially in processing spatial and temporal information. Further, adult hippocampal neurogenesis (AHN) in the dentate gyrus (DG) has also been linked to learning. To study hippocampal neuronal activity during events like learning, in vivo calcium imaging has become increasingly popular.

View Article and Find Full Text PDF

Good aerobic and metabolic fitness associates with better cognitive performance and brain health. Conversely, poor metabolic health predisposes to neurodegenerative diseases. Our previous findings indicate that rats selectively bred for Low Capacity for Running (LCR) show less synaptic plasticity and more inflammation in the hippocampus and perform worse in tasks requiring flexible cognition than rats bred for High Capacity for Running (HCR).

View Article and Find Full Text PDF

Good aerobic fitness associates positively with cognitive performance and brain health and conversely, low aerobic fitness predisposes to neurodegenerative diseases. To study how genotype together with exercise, started at older age, affects brain and behavior, we utilized rats that differ in inherited aerobic fitness. Rats bred for Low Capacity for Running (LCR) are shown to display less synaptic plasticity and more inflammation in the hippocampus and perform worse than rats bred for a High Capacity for Running (HCR) in tasks requiring flexible cognition.

View Article and Find Full Text PDF