Publications by authors named "S M Landau"

Background: The authors assessed the feasibility, acceptability, and impact on cancer worry of a cancer screening program using multicancer early detection (MCED) tests and whole-body magnetic resonance imaging (WBM) in individuals at high cancer risk because of family history or germline variants in cancer-susceptibility genes.

Methods: This prospective trial enrolled participants aged 50 years and older who had a significant family history of cancer or a cancer-susceptibility gene variant. Participants underwent noncontrast WBM and MCED testing.

View Article and Find Full Text PDF

This Review explores the rapidly evolving field of bioengineered vasculature, a key area of focus in tissue engineering and regenerative medicine. The broad relevance of this topic is attributed to its impacts on a wide range of biological processes, enabling studies in tissue development, fundamental biology and drug discovery, and the applications in tissue engineering and regenerative medicine. We outline the design criteria for bioengineered vasculature and the methodologies for constructing these systems by self-assembly and in microfluidics, organs-on-a-chip and macroscale tubular systems that often rely on biofabrication approaches such as 3D printing.

View Article and Find Full Text PDF

Introduction: A key goal of the Alzheimer's Disease NeuroImaging Initiative (ADNI) positron emission tomography (PET) Core is to harmonize quantification of β-amyloid (Aβ) and tau PET image data across multiple scanners and tracers.

Methods: We developed an analysis pipeline (Berkeley PET Imaging Pipeline, B-PIP) for ADNI Aβ and tau PET images and applied it to PET data from other multisite studies. Steps include image pre-processing, refacing, magnetic resonance imaging (MRI)/PET co-registration, visual quality control (QC), quantification of tracer uptake, and standardization of Aβ and tau standardized uptake value ratios (SUVrs) across tracers.

View Article and Find Full Text PDF

Geometric and structural integrity often deteriorate in 3D printed cell-laden constructs over time due to cellular compaction and hydrogel shrinkage. This study introduces a new approach that synergizes the advantages of cell compatibility of biological hydrogels and mechanical stability of elastomeric polymers for structure fidelity maintenance upon stereolithography and extrusion 3D printing. Enabling this advance is the composite bioink, formulated by integrating elastomeric microparticles from poly(octamethylene maleate (anhydride) citrate) (POMaC) into biologically derived hydrogels (fibrin, gelatin methacryloyl (GelMA), and alginate).

View Article and Find Full Text PDF