Hafnium nitride nanoparticles (HfN NPs) can offer appealing plasmonic properties at the nanoscale, but the fabrication of stable water-dispersible solutions of non-toxic HfN NPs exhibiting plasmonic features in the window of relative biological transparency presents a great challenge. Here, we demonstrate a solution to this problem by employing ultrashort (femtosecond) laser ablation from a HfN target in organic solutions, followed by a coating of the formed NPs with polyethylene glycol (PEG) and subsequent dispersion in water. We show that the fabricated NPs exhibit plasmonic absorption bands with maxima around 590 nm, 620 nm, and 650 nm, depending on the synthesis environment (ethanol, acetone, and acetonitrile, respectively), which are largely red-shifted compared to what is expected from pure HfN NPs.
View Article and Find Full Text PDFBoron-enhanced proton therapy has recently appeared as a promising approach to increase the efficiency of proton therapy on tumor cells, and this modality can further be improved by the use of boron nanoparticles (B NPs) as local sensitizers to achieve enhanced and targeted therapeutic outcomes. However, the mechanisms of tumor cell elimination under boron-enhanced proton therapy still require clarification. Here, we explore possible molecular mechanisms responsible for the enhancement of therapeutic outcomes under boron NP-enhanced proton therapy.
View Article and Find Full Text PDFBull Exp Biol Med
February 2024
High X-ray absorption combined with photothermal properties make bismuth nanoparticles (Bi NP) a promising agent for multimodal cancer theranostics. However, the synthesis of Bi NP by the "classical" chemical methods has numerous limitations, including potential toxicity of the produced nanomaterials. Here we studied in vitro toxicity of laser-synthesized Bi NP coated with Pluronic F-127 on mouse fibroblast cell line L929.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) is one of the most appealing radiotherapy modalities, whose localization can be further improved by the employment of boron-containing nanoformulations, but the fabrication of biologically friendly, water-dispersible nanoparticles (NPs) with high boron content and favorable physicochemical characteristics still presents a great challenge. Here, we explore the use of elemental boron (B) NPs (BNPs) fabricated using the methods of pulsed laser ablation in liquids as sensitizers of BNCT. Depending on the conditions of laser-ablative synthesis, the used NPs were amorphous (a-BNPs) or partially crystallized (pc-BNPs) with a mean size of 20 nm or 50 nm, respectively.
View Article and Find Full Text PDFNuclear medicine presents one of the most promising modalities for efficient non-invasive treatment of a variety of cancers, but the application of radionuclides in cancer therapy and diagnostics is severely limited by their nonspecific tissue accumulation and poor biocompatibility. Here, we explore the use of nanosized metal-organic frameworks (MOFs) as carriers of radionuclides to order to improve their delivery to tumour. To demonstrate the concept, we prepared polymer-coated MIL-101(Cr)-NHMOFs and conjugated them with clinically utilized radionuclideRe.
View Article and Find Full Text PDF