Publications by authors named "S M Kaminsky"

CLN2 disease (late infantile neuronal ceroid lipofuscinosis) is an autosomal recessive, neurodegenerative lysosomal storage disease that results from loss of function mutations in the gene, which encodes tripeptidyl peptidase 1. It affects the central nervous system (CNS) with progressive neurodegeneration and early death, typically at ages from 8 to 12 years. Twenty years ago, our phase I clinical trial treated subjects with CLN2 disease by a catheter-based CNS administration of an adeno-associated virus vector serotype 2 (AAV2) expressing the gene.

View Article and Find Full Text PDF

Chronic hypereosinophilia, defined as persistent elevated blood levels of eosinophils ≥1,500/μL, is associated with tissue infiltration of eosinophils and consequent organ damage by eosinophil release of toxic mediators. The current therapies for chronic hypereosinophilia have limited success, require repetitive administration, and are associated with a variety of adverse effects. As a novel approach to treat chronic hypereosinophilia, we hypothesized that adeno-associated virus (AAV)-mediated delivery of an anti-human eosinophil antibody would provide one-time therapy that would mediate persistent suppression of blood eosinophil levels.

View Article and Find Full Text PDF

Gene therapy to treat hereditary disorders conventionally delivers the normal allele to compensate for loss-of-function mutations. More effective gene therapy may be achieved using a gain-of-function variant. We tested the hypothesis that AAVrh.

View Article and Find Full Text PDF

Identifying cancer therapy resistance is a key time-saving tool for physicians. Part of chemotherapy resistance includes senescence, a persistent state without cell division or cell death. Chemically inducing senescence with the combination of trametinib and palbociclib (TP) yields several tumorigenic and prometastatic factors in pancreatic cancer models with many potential antibody-based targets.

View Article and Find Full Text PDF

Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN.

View Article and Find Full Text PDF