Efficient suppression of errors without full error correction is crucial for applications with noisy intermediate-scale quantum devices. Error mitigation allows us to suppress errors in extracting expectation values without the need for any error correction code, but its applications are limited to estimating expectation values, and cannot provide us with high-fidelity quantum operations acting on arbitrary quantum states. To address this challenge, we propose to use error filtration (EF) for gate-based quantum computation, as a practical error suppression scheme without resorting to full quantum error correction.
View Article and Find Full Text PDFThe design of quantum hardware that reduces and mitigates errors is essential for practical quantum error correction (QEC) and useful quantum computation. To this end, we introduce the circuit-Quantum Electrodynamics (QED) dual-rail qubit in which our physical qubit is encoded in the single-photon subspace, [Formula: see text], of two superconducting microwave cavities. The dominant photon loss errors can be detected and converted into erasure errors, which are in general much easier to correct.
View Article and Find Full Text PDFFast, high-fidelity operations between microwave resonators are an important tool for bosonic quantum computation and simulation with superconducting circuits. An attractive approach for implementing these operations is to couple these resonators via a nonlinear converter and actuate parametric processes with RF drives. It can be challenging to make these processes simultaneously fast and high fidelity, since this requires introducing strong drives without activating parasitic processes or introducing additional decoherence channels.
View Article and Find Full Text PDFThe ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information.
View Article and Find Full Text PDF