The study of rare genetic diseases provides valuable insights into human gene function. The autosomal dominant or autosomal recessive forms of Robinow syndrome are genetically heterogeneous, and the common theme is that all the mutations lie in genes in Wnt signaling pathways. Cases diagnosed with Robinow syndrome do survive to adulthood with distinct skeletal phenotypes, including limb shortening and craniofacial abnormalities.
View Article and Find Full Text PDFHeterozygous missense mutations in several genes in the WNT5A signaling pathway cause autosomal dominant Robinow syndrome 1 (DRS1). Our objective was to clarify the functional impact of a missense mutation in WNT5A on the skeleton, one of the main affected tissues in RS. We delivered avian replication competent retroviruses (RCAS) containing human wild-type WNT5A (wtWNT5A), WNT5AC83S variant or GFP/AlkPO4 control genes to the chicken embryo limb.
View Article and Find Full Text PDFThe study of rare genetic diseases provides valuable insights into human gene function. Here, we investigate dominant Robinow syndrome (RS), which affects the WNT5A signaling pathway. Autosomal dominant RS is caused by missense mutations in WNT5A or nonsense mutations in the adaptor protein DVL1 or DVL3.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
September 2014
The common killifish or mummichog (Fundulus heteroclitus) is an estuarine teleost increasingly used in comparative physiology, toxicology and embryology. Their ability to withstand extreme environmental conditions and ease of maintenance has made them popular aquatic research organisms. Scientific advances with most popular model organisms have been assisted with the availability of continuous cell lines; however, cell lines from F.
View Article and Find Full Text PDF