Publications by authors named "S M Game"

Pediatric high-grade gliomas (pHGGs) are the most aggressive brain tumors in children, necessitating innovative therapies to improve outcomes. Unlike adult gliomas, recent research reveals that childhood gliomas have distinct biological features, requiring specific treatment strategies. Here, we focused on deciphering unique genetic dependencies specific to childhood gliomas.

View Article and Find Full Text PDF
Article Synopsis
  • Diffuse midline gliomas (DMG), particularly diffuse intrinsic pontine gliomas (DIPG), are highly lethal childhood cancers, with palliative radiotherapy offering limited survival benefits of 9-11 months.
  • ONC201, a drug that targets certain pathways in cancer cells, has shown potential effectiveness against DMG, but further research is needed to understand how different genetic mutations affect its response.
  • Studies indicate that DIPGs with PIK3CA mutations are more sensitive to ONC201, while those with TP53 mutations are resistant; combining ONC201 with the drug paxalisib can enhance treatment effectiveness by overcoming metabolic adaptations linked to these mutations.
View Article and Find Full Text PDF

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9-11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG.

View Article and Find Full Text PDF

Phoretic mechanisms, whereby gradients of chemical solutes induce surface-driven flows, have recently been used to generate directed propulsion of patterned colloidal particles. When the chemical solutes diffuse slowly, an instability further provides active isotropic particles with a route to self-propulsion by spontaneously breaking the symmetry of the solute distribution. Here we show theoretically that, in a mechanism analogous to Bénard-Marangoni convection, phoretic phenomena can create spontaneous and self-sustained wall-driven mixing flows within a straight, chemically-uniform active channel.

View Article and Find Full Text PDF