Copper-based nanoparticles (NPs) are highly valued for their wide-ranging applications, with particular significance in CO reduction. However current synthesis methods encounter challenges in scalability, batch-to-batch variation, and high energy costs. In this work, we describe a novel continuous flow synthesis approach performed at room temperature to help address these issues, producing spherical, colloidally stable copper(ii) oxide (CuO) NPs.
View Article and Find Full Text PDFSuperoxide dismutase enzymes are a major defense against superoxide, which is a potent reactive oxygen species. Misregulation of reactive oxygen species and subsequent neuronal damage are etiological hallmarks of neurodegenerative disease. Macrocyclic small molecules have offered inroads toward functional SOD1 mimics.
View Article and Find Full Text PDFBackground/objectives: Despite strong evidence that breastfeeding, skin-to-skin care, and sucrose reduce pain in newborns during minor painful procedures, these interventions remain underutilized in practice. To address this knowledge-to-practice gap, we produced a five-minute parent-targeted video demonstrating the analgesic effects of these strategies and examined whether the use of newborn pain treatment increased in maternal-newborn care settings following the introduction of the video by nurses.
Methods: The design was a pre-post outcome evaluation.
Internal tandem duplications (ITD) in fms-like tyrosine kinase 3 (FLT3) represent the most common genetic alteration in de novo acute myeloid leukemia (AML). Here, we identify ribosomal protein s6 kinase a1 (RSK1) as a core dependency in FLT3-ITD AML and unveil the existence of crucial bi-directional regulation. RSK1 perturbation resulted in marked apoptosis and abrogated phosphorylation of FLT3 and associated downstream signaling cascades in FLT3-ITD AML cell lines.
View Article and Find Full Text PDF