Altered frequency and function of peripheral invariant NKT (iNKT) cells have been implicated in the regulation of murine and human type 1a diabetes. To examine regulatory cells from the site of drainage of autoinflammatory tissue and autoantigenic T cell priming in diabetes, we directly cloned iNKT cells from human pancreatic draining lymph nodes (PLN). From 451 T cell clones from control and diabetic PLN, we derived 55 iNKT cells by two methods and analyzed function by cytokine secretion.
View Article and Find Full Text PDFIn autoimmune type 1 diabetes, pathogenic T lymphocytes are associated with the specific destruction of insulin-producing beta-islet cells. Identification of the autoantigens involved in triggering this process is a central question. Here we examined T cells from pancreatic draining lymph nodes, the site of islet-cell-specific self-antigen presentation.
View Article and Find Full Text PDFBackground: The functional response and immunobiology of primarily non-vascularized islet cell xenografts remain poorly defined in non-human primates.
Methods: We transplanted 20,000 adult porcine islet equivalents/kg (purified and cultured for 48-h) intraportally into six streptozotocin-diabetic and two non-diabetic rhesus macaques. Two recipients were killed at various intervals post-transplant for histologic examination of livers bearing xenografts.
We sought to determine whether or not optimizing pancreas preservation, islet processing, and induction immunosuppression would facilitate sustained diabetes reversal after single-donor islet transplants. Islets were isolated from two-layer preserved pancreata, purified, cultured for 2 days; and transplanted into six C-peptide-negative, nonuremic, type 1 diabetic patients with hypoglycemia unawareness. Induction immunosuppression, which began 2 days pretransplant, included the Fc receptor nonbinding humanized anti-CD3 monoclonal antibody hOKT3gamma1 (Ala-Ala) and sirolimus.
View Article and Find Full Text PDF