Langmuir
December 2024
The relentless wear and friction of steel-based moving machinery have created ongoing challenges that hinder their industrial applications. One promising solution is the use of reduced graphene oxide (rGO) as a lubricant due to its excellent mechanical strength and promising tribological properties. However, its tendency to self-agglomerate presents a major hurdle for its practical use.
View Article and Find Full Text PDFIn the present study, a novel green energy generation process assisted with Microbial Fuel Cell (MFC) principle for generation of electricity from used or wasted steel is explored. Through a unique approach, unused and other steel waste are recast by simple re-melting with a flexible wide composition for generation of green energy. A microbial-assisted electron transfer derived from the degradation of the steel material is utilized for production of green energy in a microbial galvanic reactor system.
View Article and Find Full Text PDFSurface coatings with enhanced mechanical stability, improved tribological performance, and superior anticorrosion performance find immense application in various industrial sectors. Herein, we report the development of multifunctional composite zinc phosphate coatings by the effective integration of a structurally and morphologically tuned P-doped MoS nanoparticle additive (3P-MoS) into the zinc phosphate matrix to offer attractive characteristics suitable for industrial applications. The integration of spherical nanoparticles as additive leads to the formation of homogeneous and compact coatings with a densely packed crystalline microstructure having enhanced microhardness, distinctive leaf-like morphology, and comparatively smooth topographical features.
View Article and Find Full Text PDFIn the quest for sustainable hydrogen production via water electrolysis, the development of high-performance, noble-metal-free catalytic systems is highly desired. Herein, we proposed an innovative strategy for the development of an electrocatalyst by refining the surface characteristics of a NiFeP alloy through microbiological techniques and subsequent enrichment of active sites by tailoring 3D hierarchical flower-like structures with intact and interconnected two-dimensional (2D) CoO. The resultant 3D CoO@NiFeP-5/24h has a porous structure comprised of intercrossed nanoparticles covering the entirety of the catalytic surface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Designing and developing noble-metal-free catalysts are of current interest in clean hydrogen generation via water splitting. As carbonaceous species are ideal choices as templates for various electrocatalysis, an improved synthetic route and an in-depth understanding of their electrochemical performance are essential. Herein, we have investigated the catalytic performance of rGO-encapsulated Mn and V mixed oxide hybrid structures (MVG) on a NiFeP matrix, focusing on their potential for catalyzing hydrogen evolution in an alkaline environment.
View Article and Find Full Text PDF