Publications by authors named "S Lynne Rich"

People living with HIV are at higher risk of heart failure and associated left atrial remodeling compared to people without HIV. Mechanisms are unclear but have been linked to inflammation and premature aging. Here we obtain plasma proteomics concurrently with cardiac magnetic resonance imaging in two independent study populations to identify parallels between HIV-related and aging-related immune dysfunction that could contribute to atrial remodeling and clinical heart failure.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Polygenic risk scores (PRSs) depend on genetic ancestry due to differences in allele frequencies between ancestral populations. This leads to implementation challenges in diverse populations. We propose a framework to calibrate PRS based on ancestral makeup.

View Article and Find Full Text PDF

In studies of individuals of primarily European genetic ancestry, common and low-frequency variants and rare coding variants have been found to be associated with the risk of bipolar disorder (BD) and schizophrenia (SZ). However, less is known for individuals of other genetic ancestries or the role of rare non-coding variants in BD and SZ risk. We performed whole genome sequencing of African American individuals: 1,598 with BD, 3,295 with SZ, and 2,651 unaffected controls (InPSYght study).

View Article and Find Full Text PDF

Biological datasets often consist of thousands or millions of variables, e.g. genetic variants or biomarkers, and when sample sizes are large it is common to find many associated with an outcome of interest, for example, disease risk in a GWAS, at high levels of statistical significance, but with very small effects.

View Article and Find Full Text PDF