Publications by authors named "S Luvisetto"

Studies on animals and humans have amply demonstrated the therapeutic efficacy of botulinum neurotoxins (BoNTs) in many pathologies [...

View Article and Find Full Text PDF

We previously reported that cyclin D3-null mice display a shift toward the slow, oxidative phenotype in skeletal muscle, improved exercise endurance, and increased energy expenditure. Here, we explored the role of cyclin D3 in the physiologic response of skeletal muscle to external stimuli and in a model of muscle degenerative disease. We show that cyclin D3-null mice exhibit a further transition from glycolytic to oxidative muscle fiber type in response to voluntary exercise and an improved response to fasting.

View Article and Find Full Text PDF

Xeomin is a commercial formulation of botulinum neurotoxin type A (BoNT/A) clinically authorized for treating neurological disorders, such as blepharospasm, cervical dystonia, limb spasticity, and sialorrhea. We have previously demonstrated that spinal injection of laboratory purified 150 kDa BoNT/A in paraplegic mice, after undergoing traumatic spinal cord injury (SCI), was able to reduce excitotoxic phenomena, glial scar, inflammation, and the development of neuropathic pain and facilitate regeneration and motor recovery. In the present study, as proof of concept in view of a possible clinical application, we studied the efficacy of Xeomin in the same preclinical SCI model in which we highlighted the positive effects of lab-purified BoNT/A.

View Article and Find Full Text PDF

In recent years, numerous studies have highlighted the significant use of botulinum neurotoxins (BoNTs) in the human therapy of various motor and autonomic disorders. The therapeutic action is exerted with the selective cleavage of specific sites of the SNARE's protein complex, which plays a key role in the vesicular neuroexocytosis which is responsible for neural transmission. The primary target of the BoNTs' action is the peripheral neuromuscular junction (NMJ), where, by blocking cholinergic neurons releasing acetylcholine (ACh), they interfere with neural transmission.

View Article and Find Full Text PDF

Botulinum neurotoxins (BoNTs) are potent inhibitors of synaptic vesicle fusion and transmitter release. The natural target of BoNTs is the peripheral neuromuscular junction (NMJ) where, by blocking the release of acetylcholine (ACh), they functionally denervate muscles and alter muscle tone. This leads them to be an excellent drug for the therapy of muscle hyperactivity disorders, such as dystonia, spasticity, and many other movement disorders.

View Article and Find Full Text PDF