Background: Obesity has become a global pandemic, marked by significant shifts in both the homeostatic and hedonic/reward aspects of food consumption. While the precise causes are still under investigation, recent studies have identified the role of gut microbes in dysregulating the reward system within the context of obesity. Unravelling these gut-brain connections is crucial for developing effective interventions against eating and metabolic disorders, particularly in the context of obesity.
View Article and Find Full Text PDFUnlabelled: The endocannabinoid (eCB) system regulates stress responsiveness and hypothalamic-pituitary-adrenal (HPA) axis activity. The enzyme -acyl phosphatidylethanolamine phospholipase-D (NAPE-PLD) is primarily responsible for the synthesis of the endocannabinoid signaling molecule anandamide (AEA) and other structurally related lipid signaling molecules known as -acylethanolamines (NAEs). However, little is known about how activity of this enzyme affects behavior.
View Article and Find Full Text PDFThe vagus nerve serves as an interoceptive relay between the body and the brain. Despite its well-established role in feeding behaviors, energy metabolism, and cognitive functions, the intricate functional processes linking the vagus nerve to the hippocampus and its contribution to learning and memory dynamics remain still elusive. Here, we investigated whether and how the gut-brain vagal axis contributes to hippocampal learning and memory processes at behavioral, functional, cellular, and molecular levels.
View Article and Find Full Text PDFBackground: Growing evidence demonstrates the role of the striatal dopamine system in the regulation of glucose metabolism. Treatment with dopamine antagonists is associated with insulin resistance and hyperglycemia, while dopamine agonists are used in treatment of type 2 diabetes. The mechanism underlying striatal dopamine effects in glucose metabolism, however is not fully understood.
View Article and Find Full Text PDF