Publications by authors named "S Luchuk"

The LHCb Collaboration measures production of the exotic hadron χ_{c1}(3872) in proton-nucleus collisions for the first time. Comparison with the charmonium state ψ(2S) suggests that the exotic χ_{c1}(3872) experiences different dynamics in the nuclear medium than conventional hadrons, and comparison with data from proton-proton collisions indicates that the presence of the nucleus may modify χ_{c1}(3872) production rates. This is the first measurement of the nuclear modification factor of an exotic hadron.

View Article and Find Full Text PDF

An amplitude analysis of the B^{0}→K^{*0}μ^{+}μ^{-} decay is presented using a dataset corresponding to an integrated luminosity of 4.7  fb^{-1} of pp collision data collected with the LHCb experiment. For the first time, the coefficients associated to short-distance physics effects, sensitive to processes beyond the standard model, are extracted directly from the data through a q^{2}-unbinned amplitude analysis, where q^{2} is the μ^{+}μ^{-} invariant mass squared.

View Article and Find Full Text PDF

The fraction of χ_{c1} and χ_{c2} decays in the prompt J/ψ yield, F_{χ_{c}→J/ψ}=σ_{χ_{c}→J/ψ}/σ_{J/ψ}, is measured by the LHCb detector in pPb collisions at sqrt[s_{NN}]=8.16  TeV. The study covers the forward (1.

View Article and Find Full Text PDF

The first observation of the singly Cabibbo-suppressed Ω_{c}^{0}→Ω^{-}K^{+} and Ω_{c}^{0}→Ξ^{-}π^{+} decays is reported, using proton-proton collision data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4  fb^{-1}, collected with the LHCb detector between 2016 and 2018. The branching fraction ratios are measured to be B(Ω_{c}^{0}→Ω^{-}K^{+})/B(Ω_{c}^{0}→Ω^{-}π^{+})=[6.

View Article and Find Full Text PDF

The production rate of Λ_{b}^{0} baryons relative to B^{0} mesons in pp collisions at a center-of-mass energy sqrt[s]=13  TeV is measured by the LHCb experiment. The ratio of Λ_{b}^{0} to B^{0} production cross sections shows a significant dependence on both the transverse momentum and the measured charged-particle multiplicity. At low multiplicity, the ratio measured at LHCb is consistent with the value measured in e^{+}e^{-} collisions, and increases by a factor of ∼2 with increasing multiplicity.

View Article and Find Full Text PDF