Publications by authors named "S Loiselle"

Olive leaves are a rich source of polyphenols with healthful properties and represent one of the most abundant waste products of olive oil production. The aims of this study were to explore the phenolic composition of olive leaves from the three main Tuscan cultivars (Leccino, Moraiolo and Frantoio) collected in Siena and Grosseto provinces and to investigate the possible use of these compounds as varietal and geographic origin markers. Discriminant factorial analysis (DFA) was used for distinguishing between different cultivars and locations.

View Article and Find Full Text PDF

The lake eutrophication is highly variable in both time and location, and greatly restricts the sustainable development of water resources. The lack of national eutrophication evaluation for multi-scale lakes limits the pertinent governance and sustainable management of water quality. In this study, a remote sensing approach was developed to capture 40-year dynamics of trophic state index (TSI) for nationwide lakes in China.

View Article and Find Full Text PDF

In situ monitoring is fundamental to manage eutrophication in rivers and streams. However, in recent decades, the frequency and spatial coverage of regulatory monitoring have often been reduced due to funding and infrastructure limitations. This reduction has made it impossible to provide adequate coverage for most water bodies.

View Article and Find Full Text PDF

The long-term sustainability of the African Great Lakes is strongly connected to the management and monitoring of their coastal areas. Yet, the communities that live in these areas are rarely involved in monitoring and have limited influence on key management issues. Furthermore, regulatory activities and knowledge sharing in these transnational ecosystems are strongly limited by funding and infrastructure limitations.

View Article and Find Full Text PDF

Dissolved organic carbon (DOC) and particulate organic carbon (POC) play a fundamental role in biogeochemical cycles of freshwater ecosystems. However, the lack of readily available distributed models for carbon export has limited the effective management of organic carbon fluxes from soils, through river networks and to receiving marine waters. We develop a spatially semi-distributed mass balance modeling approach to estimate organic carbon flux at a sub-basin and basin scales, using commonly available data, to allow stakeholders to explore the impacts of alternative river basin management scenarios and climate change on riverine DOC and POC dynamics.

View Article and Find Full Text PDF