Philos Trans R Soc Lond B Biol Sci
June 2020
The early steps in germination and development of angiosperm seedlings often occur in the dark, inducing a special developmental programme called skoto-morphogenesis. Under these conditions photosynthesis cannot work and all energetic requirements must be fulfilled by mitochondrial metabolization of storage energies. Here, we report the physiological impact of mitochondrial dysfunctions on the skoto-morphogenic programme by using the mutant.
View Article and Find Full Text PDFPlastids of plant and algae cells are of endosymbiotic origin. They possess their own genome and a sophisticated protein machinery to express it. Studies over the recent years uncovered that the regulation of plastid gene expression is highly complex involving a multiplicity of regulatory protein factors that are mostly imported from the cytosol.
View Article and Find Full Text PDFPlants possessing dysfunctional plastids due to defects in pigment biosynthesis or translation are known to repress photosynthesis-associated nuclear genes via retrograde signals from the disturbed organelles toward the nucleus. These signals are thought to be essential for proper biogenesis and function of the plastid. Mutants lacking plastid-encoded RNA polymerase-associated proteins (PAPs) display a genetic arrest in eoplast-chloroplast transition leading to an albino phenotype in the light.
View Article and Find Full Text PDFPlastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition.
View Article and Find Full Text PDFChloroplasts are the sunlight-collecting organelles of photosynthetic eukaryotes that energetically drive the biosphere of our planet. They are the base for all major food webs by providing essential photosynthates to all heterotrophic organisms including humans. Recent research has focused largely on an understanding of the function of these organelles, but knowledge about the biogenesis of chloroplasts is rather limited.
View Article and Find Full Text PDF