Cell Mol Biol (Noisy-le-grand)
November 1996
The present article provides experimental evidence for previous claims, that Lys 539, without being directly involved in anion binding or translocation, is allosterically linked to the anion binding sites of the band 3 protein and to some other, as yet unidentified amino acid residue. The evidence is based on a detailed study of the kinetics of inhibition of sulphate equilibrium exchange by 1-fluoro-2,4-dinitrobenzene (N2ph-F). It is shown that the mutation of Lys 558 in mouse band 3, which is homologous to Lys 539 in human band 3, renders the transport protein insusceptible to inhibition by N2pH-F, confirming that it is the modification of this residue which results in the inhibition of band 3-mediated transport.
View Article and Find Full Text PDFSubstitution by site-directed mutagenesis of any one of the histidine residues H721, H837, and H852 by glutamine, or of H752 by serine, inhibits Cl- flux mediated by band 3 expressed in Xenopus oocytes. Mutation of Lys 558 (K558N), the site of covalent binding of H2DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonate) in the outer membrane surface, in combination with any one of the His/Gln mutations leads to partial (H721Q; H837Q) or complete (H852Q) restoration of Cl- flux. In contrast, inhibition of Cl- flux by mutation of proline or lysine residues in the vicinity of His 837 at the inner membrane surface cannot be reversed by the second-site mutation K558N, indicating specificity of interaction between Lys 558 and His 837.
View Article and Find Full Text PDFA cDNA clone of the mouse erythroid band 3 protein encoding the 556 amino acid residues of the hydrophobic domain from Thr-374 to the C-terminal Val-929 is shown by immunoprecipitation to be expressed in Xenopus oocytes. Measurements of 36Cl- efflux indicate that the translation product mediates Cl- transport, which is inhibitable reversibly by DNDS or H2DIDS, specific inhibitors of band 3-mediated transport. The apparent KI values are 3.
View Article and Find Full Text PDFThe rapid reversible inhibition of band 3-mediated inorganic anion transport by 4,4'-diisothiocyanodihydrostilbene-2,2'-disfulfonate (H2DIDS) turns slowly into irreversible inhibition. This is due to covalent bond formation of the two isothiocyanate groups of the inhibitor with two lysine residues on band 3, called Lys a and Lys b. In the red cell membrane, the pK value of Lys a is about 2.
View Article and Find Full Text PDF