Publications by authors named "S Leboucher"

Objectives: The RNA epitranscriptomic modification known as -methyladenosine (mA) represents a novel mechanism of gene regulation that is poorly understood in human autoimmune diseases. Our research explores the role of this RNA mA modification in salivary gland epithelial cells (SGEC) and its impact on the pathogenesis of Sjögren's disease (SjD).

Methods: SGECs from SjD patients and controls were analysed for mA writers METTL3 and METTL14 expression using RNA-seq, quantitative PCR and immunohistochemistry.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is a deadly brain cancer that often recurs due to the regrowth of cells that resist treatment and invade surrounding tissues.
  • * Research shows that chemoradiation triggers a cell state called VC-Resist in GBM, which is more resistant to therapy and promotes tumor cell infiltration into the brain.
  • * The VC-Resist state is linked to specific molecular features that enhance resistance, including DNA damage resistance and activation of pathways associated with stemness, ultimately complicating treatment efforts.
View Article and Find Full Text PDF

AsiDNAâ„¢, a cholesterol-coupled oligonucleotide mimicking double-stranded DNA breaks, was developed to sensitize tumour cells to radio- and chemotherapy. This drug acts as a decoy hijacking the DNA damage response. Previous studies have demonstrated that standalone AsiDNAâ„¢ administration is well tolerated with no additional adverse effects when combined with chemo- and/or radiotherapy.

View Article and Find Full Text PDF

Radiation Induced Lung Injury (RILI) is one of the main limiting factors of thorax irradiation, which can induce acute pneumonitis as well as pulmonary fibrosis, the latter being a life-threatening condition. The order of cellular and molecular events in the progression towards fibrosis is key to the physiopathogenesis of the disease, yet their coordination in space and time remains largely unexplored. Here, we present an interactive murine single cell atlas of the lung response to irradiation, generated from C57BL6/J female mice.

View Article and Find Full Text PDF

Cytidine deaminase (CDA) catalyzes the deamination of cytidine (C) and deoxycytidine (dC) to uridine and deoxyuridine, respectively. We recently showed that CDA deficiency leads to genomic instability, a hallmark of cancers. We therefore investigated whether constitutive CDA inactivation conferred a predisposition to cancer development.

View Article and Find Full Text PDF