J Mech Behav Biomed Mater
November 2023
We propose an analytical micromechanical model for studying the lamellar-composite-like structure of fibrous soft tissue. The tissue under consideration is made up of several lamellae, and is designed to resemble the annulus fibrosus (AF) tissue or media layer of arterial tissue, for example. The collagen fibers are arranged in parallel in each lamella and the fiber orientation differs from one lamella to its neighbors.
View Article and Find Full Text PDFBackground: Articular cartilage (AC)'s main function is to resist to a stressful mechanical environment, and chondrocytes are responding to mechanical stress for the development and homeostasis of this tissue. However, current knowledge on processes involved in response to mechanical stimulation is still limited. These mechanisms are commonly investigated in engineered cartilage models where the chondrocytes are included in an exogeneous biomaterial different from their natural extracellular matrix.
View Article and Find Full Text PDFArticular cartilage (AC) is the thin tissue that covers the long bone ends in the joints and that ensures the transmission of forces between adjacent bones while allowing nearly frictionless movements between them. AC repair is a technologic and scientific challenge that has been addressed with numerous approaches. A major deadlock is the capacity to take in account its complex mechanical properties in repair strategies.
View Article and Find Full Text PDFCurrent intervertebral disc finite element models are hard to validate since they describe multi-physical phenomena and contain a huge number of material properties. This work aims to simplify numerical validation/identification studies by prioritizing the sensitivity of intervertebral disc behavior to mechanical properties. A 3D fiber-reinforced hyperelastic model of a C6-C7 intervertebral disc is used to carry out the parametric study.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2022
The temporomandibular joint is one of the most frequently used joints of the human body. Its malfunction can severely influence patient's well-being. Since the temporomandibular joint disc plays a major role in its functioning, especially in load distribution within the joint, it appears to be a crucial element to understand.
View Article and Find Full Text PDF