The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.
View Article and Find Full Text PDFRhesus macaques (RMs) are vital models for studying human disease, and are invaluable to pre-clinical pipelines for vaccine discovery and testing. Particularly in this regard, they are often used to study infection and vaccine-associated broadly neutralizing antibody responses. This has resulted in an increasing demand for improved genetic resources for the immunoglobulin (IG) loci, which harbor antibody-encoding genes.
View Article and Find Full Text PDFWaning immunity and the emergence of immune evasive SARS-CoV-2 variants jeopardize vaccine efficacy leading to breakthrough infections. We have previously shown that innate immune cells play a critical role in controlling SARS-CoV-2. To investigate the innate immune response during breakthrough infections, we modeled breakthrough infections by challenging low-dose vaccinated mice with a vaccine-mismatched SARS-CoV-2 Beta variant.
View Article and Find Full Text PDFThe continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.
View Article and Find Full Text PDF