This paper introduces a novel approach for automated high-throughput estimation of plasma temperature and density using atomic emission spectroscopy, integrating Bayesian inference with sophisticated physical models. We provide an in-depth examination of Bayesian methods applied to the complexities of plasma diagnostics, supported by a robust framework of physical and measurement models. Our methodology is demonstrated using experimental observations in the field of magneto-inertial fusion, focusing on individual and sequential shot analyses of the Plasma Liner Experiment at LANL.
View Article and Find Full Text PDFAt Plasma Liner Experiment, a set of 36 coaxial plasma guns are deployed quasi-uniformly over a 9 ft diameter spherical chamber and are used to form a high-Z spherically compressive plasma liner. Simulations indicate that for the concept to ultimately achieve optimal target density and temperature, a high degree of timing uniformity is required between all guns. To aid in quantifying and correcting gun-to-gun nonuniformities, a key diagnostic will consist of up to six fisheye-view CCD cameras positioned inside the main chamber such that each has all plasma guns within its view.
View Article and Find Full Text PDFCollisional plasma shocks generated from supersonic flows are an important feature in many astrophysical and laboratory high-energy-density plasmas. Compared to single-ion-species plasma shocks, plasma shock fronts with multiple ion species contain additional structure, including interspecies ion separation driven by gradients in species concentration, temperature, pressure, and electric potential. We present time-resolved density and temperature measurements of two ion species in collisional plasma shocks produced by head-on merging of supersonic plasma jets, allowing determination of the ion diffusion coefficients.
View Article and Find Full Text PDFThe Z machine is a current driver producing up to 30 MA in 100 ns that utilizes a wide range of diagnostics to assess accelerator performance and target behavior conduct experiments that use the Z target as a source of radiation or high pressures. We review the existing suite of diagnostic systems, including their locations and primary configurations. The diagnostics are grouped in the following categories: pulsed power diagnostics, x-ray power and energy, x-ray spectroscopy, x-ray imaging (including backlighting, power flow, and velocimetry), and nuclear detectors (including neutron activation).
View Article and Find Full Text PDF