Antibodies are essential to immune homeostasis due to their roles in neutralizing pathogenic agents. However, failures in central and peripheral checkpoints that eliminate autoreactive B cells can undermine self-tolerance and generate autoantibodies that mistakenly target self-antigens, leading to inflammation and autoimmune diseases. While autoantibodies are well-studied in autoimmune and in some communicable diseases, their roles in chronic conditions, such as obesity and aging, are less understood.
View Article and Find Full Text PDFCells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.
View Article and Find Full Text PDFMicrogravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station.
View Article and Find Full Text PDF