Abscisic acid (ABA) is a hormone with a long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely descendants, which existed long before the separation of the plant and animal kingdoms, with a conserved role as signals regulating cell responses to environmental challenges. In mammals, along with the anti-inflammatory and neuroprotective function of ABA, nanomolar ABA regulates the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue via an insulin-independent mechanism and increasing metabolic energy production and also dissipation in brown and white adipocytes. Chronic ABA intake of micrograms per Kg body weight improves blood glucose, lipids, and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and metabolic syndrome.
View Article and Find Full Text PDFRed blood cells (RBCs) are highly specialized cells with a limited metabolic repertoire. However, it has been demonstrated that metabolic processes are affected by the production of reactive oxygen species (ROS), and critical enzymes allied to metabolic pathways can be impaired by redox reactions. Thus, oxidative stress-induced alternations in the metabolic pathways can contribute to cell dysfunction of human RBCs.
View Article and Find Full Text PDFAbscisic acid (ABA) is a conserved 'stress hormone' in unicellular organisms, plants and animals. In mammals, ABA and its receptors LANCL1 and LANCL2 stimulate insulin-independent cell glucose uptake and oxidative metabolism: overexpression of LANCL1/2 increases, and their silencing conversely reduces, mitochondrial number, respiration and proton gradient dissipation in muscle cells and in brown adipocytes. We hypothesized that the ABA/LANCL hormone/receptors system could be involved in thermogenesis.
View Article and Find Full Text PDF