Publications by authors named "S L Spinelli"

Abscisic acid (ABA) is a hormone with a long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely descendants, which existed long before the separation of the plant and animal kingdoms, with a conserved role as signals regulating cell responses to environmental challenges. In mammals, along with the anti-inflammatory and neuroprotective function of ABA, nanomolar ABA regulates the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue via an insulin-independent mechanism and increasing metabolic energy production and also dissipation in brown and white adipocytes. Chronic ABA intake of micrograms per Kg body weight improves blood glucose, lipids, and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and metabolic syndrome.

View Article and Find Full Text PDF

Red blood cells (RBCs) are highly specialized cells with a limited metabolic repertoire. However, it has been demonstrated that metabolic processes are affected by the production of reactive oxygen species (ROS), and critical enzymes allied to metabolic pathways can be impaired by redox reactions. Thus, oxidative stress-induced alternations in the metabolic pathways can contribute to cell dysfunction of human RBCs.

View Article and Find Full Text PDF

Abscisic acid (ABA) is a conserved 'stress hormone' in unicellular organisms, plants and animals. In mammals, ABA and its receptors LANCL1 and LANCL2 stimulate insulin-independent cell glucose uptake and oxidative metabolism: overexpression of LANCL1/2 increases, and their silencing conversely reduces, mitochondrial number, respiration and proton gradient dissipation in muscle cells and in brown adipocytes. We hypothesized that the ABA/LANCL hormone/receptors system could be involved in thermogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Protocadherins, especially Protocadherin 9 (PCDH9), are important for cell-cell interactions and have been linked to Autism Spectrum Disorder (ASD) and Major Depressive Disorder (MDD).
  • Knockout (KO) of PCDH9 in mice leads to abnormal neuronal development, characterized by larger presynaptic terminals and increased excitatory synapse activity in the hippocampus.
  • The findings suggest that PCDH9 plays a critical role in regulating excitatory synapse morphology and function, influencing glutamatergic transmission and potentially contributing to neurodevelopmental disorders.
View Article and Find Full Text PDF
Article Synopsis
  • * The study found that MSCs influence microglia, the brain's immune cells, to adopt pro-regenerative functions by altering the extracellular matrix in response to inflammation.
  • * Key findings showed that MSC secretome leads to changes in microglial behavior, enhancing their mobility and cellular structures, which are important for promoting healing in the brain.
View Article and Find Full Text PDF